Towards second order Lax pairs to discrete Painlevé equations of first degree

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second order Lax pairs of nonlinear partial differential equations with Schwarz variants

In this paper, we study the possible second order Lax operators for all the possible (1+1)-dimensional models with Schwarz variants and some special types of high dimensional models. It is shown that for every (1+1)-dimensional model and some special types of high dimensional models which possess Schwarz variants may have a second order Lax pair. The explicit Lax pairs for (1+1)-dimensional Kor...

متن کامل

3 × 3 Lax pairs for the fourth , fifth and sixth Painlevé equations

We obtain 3 × 3 matrix Lax pairs for systems of ODEs that are solvable in terms of the fourth, fifth and sixth Painlevé equations by considering similarity reductions of the scattering Lax pair for the (2+1)-dimensional three-wave resonant interaction system. These results allow us to construct new 3× 3 Lax representations for the fourth and fifth Painlevé equations, together with the previousl...

متن کامل

New Expressions for Discrete Painlevé Equations

Discrete Painlevé equations are studied from various points of view as integrable systems [2], [7]. They are discrete equations which are reduced to the Painlevé differential equations in a suitable limiting process, and moreover, which pass the singularity confinement test. Passing this test can be thought of as a difference version of the Painlevé property. The Painlevé differential equations...

متن کامل

Discrete Painlevé Equations and Random Matrix Averages

The τ-function theory of Painlevé systems is used to derive recurrences in the rank n of certain random matrix averages over U (n). These recurrences involve auxilary quantities which satisfy discrete Painlevé equations. The random matrix averages include cases which can be interpreted as eigenvalue distributions at the hard edge and in the bulk of matrix ensembles with unitary symmetry. The re...

متن کامل

From First to Second-order Theoryof Linear Discrete Eventsystems

For timed event graphs, linear models were obtained using dioid algebra. After describing backward equations which solve an optimal tracking problem and which introduce co-state variables, this paper presents preliminary results concerning the matrix of ‘ratios’ (i.e. conventional differences) of co-states over states: this matrix sounds like a Riccati matrix, although a neat analogue to a Ricc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chaos, Solitons & Fractals

سال: 2000

ISSN: 0960-0779

DOI: 10.1016/s0960-0779(98)00267-7